Eigenvalues of Hille-Tamarkin operators and geometry of Banach function spaces

Thomas Kühn Universität Leipzig, Germany

FSDONA-2011, Tabarz (Germany) 18–24 September 2011

The talk is based on a two joint papers with M. Mastyło (Poznań)

- 1. Weyl numbers and eigenvalues of abstract summing operators, J. Math. Anal. Appl. 369 (2010) 408–422.
- 2. Eigenvalues of Hille-Tamarkin operators and geometry of Banach function spaces, submitted (2011)

The talk is based on a two joint papers with M. Mastyło (Poznań)

- 1. Weyl numbers and eigenvalues of abstract summing operators, J. Math. Anal. Appl. 369 (2010) 408–422.
- 2. Eigenvalues of Hille-Tamarkin operators and geometry of Banach function spaces, submitted (2011)

Plan of the talk

- Riesz operators and eigenvalues
- ② Hille-Tamarkin operators
- Geometry of Banach function spaces
- Eigenvalue estimates
- Optimality

- Definition. A bounded linear operator $T: X \to X$ in a complex Banach space X is called a Riesz operator, if for all complex numbers $\lambda \neq 0$ the operator $T \lambda Id$ is Fredholm, i.e.
 - (a) its kernel is finite-dimensional and
 - (b) its range is closed and has finite codimension.

- Definition. A bounded linear operator $T: X \to X$ in a complex Banach space X is called a Riesz operator, if for all complex numbers $\lambda \neq 0$ the operator $T \lambda Id$ is Fredholm, i.e.
 - (a) its kernel is finite-dimensional and(b) its range is closed and has finite codimension.
- Examples.
 - compact operators
 - power-compact operators (i.e. T^n is compact for some $n \in \mathbb{N}$)

- Definition. A bounded linear operator $T:X\to X$ in a complex Banach space X is called a Riesz operator, if for all complex numbers $\lambda\neq 0$ the operator $T-\lambda Id$ is Fredholm, i.e.
 - (a) its kernel is finite-dimensional and
 - (b) its range is closed and has finite codimension.
- Examples.
 - compact operators
 - power-compact operators (i.e. T^n is compact for some $n \in \mathbb{N}$)
- Theorem. The spectrum $\sigma(T)$ of a Riesz operator T has no accumulation points (except possibly 0), and all non-zero $\lambda \in \sigma(T)$ are eigenvalues of finite algebraic multiplicity, i.e.

$$\operatorname{mult}(\lambda) := \dim \left(\bigcup_{n=1}^{\infty} \ker \left((T - \lambda Id)^n \right) \right) < \infty.$$

• Ordering of the eigenvalues (counting multiplicities)

$$|\lambda_1(T)| \ge |\lambda_2(T)| \ge \ldots \ge |\lambda_n(T)| \ge \ldots \ge 0$$

If T has < n eigenvalues, we set $\lambda_n(T) = \lambda_{n+1}(T) = \ldots = 0$.

Ordering of the eigenvalues (counting multiplicities)

$$|\lambda_1(T)| \ge |\lambda_2(T)| \ge \ldots \ge |\lambda_n(T)| \ge \ldots \ge 0$$

If T has < n eigenvalues, we set $\lambda_n(T) = \lambda_{n+1}(T) = \ldots = 0$.

 The general problem
 Find the optimal asymptotic eigenvalue behaviour of operators belonging to certain classes of operators, i.e.

$$|\lambda_n(T)| \leq ???$$
 or $|\lambda_n(T)| \sim ???$ as $n \to \infty$

• Ordering of the eigenvalues (counting multiplicities)

$$|\lambda_1(T)| \ge |\lambda_2(T)| \ge \ldots \ge |\lambda_n(T)| \ge \ldots \ge 0$$

If T has < n eigenvalues, we set $\lambda_n(T) = \lambda_{n+1}(T) = \ldots = 0$.

• The general problem

Find the optimal asymptotic eigenvalue behaviour of operators belonging to certain classes of operators, i.e.

$$|\lambda_n(T)| \leq ???$$
 or $|\lambda_n(T)| \sim ???$ as $n \to \infty$

Our goal

Solve this problem for a large class of integral operators, including the classical Hille-Tamarkin and weakly singular kernels.

Tools

- absolutely summing norms of operators
- geometry of Banach spaces (cotype p and p-concavity)

• Let $1 \le p < \infty$. The absolutely *p*-summing norm of an operator $T: X \to Y$ with respect to *n* vectors is defined as $\pi_n^{(n)}(T) = \inf c$

such that for all $x_1, ..., x_n \in X$

$$\underbrace{\left(\sum_{j=1}^{n}\|Tx_{j}\|^{p}\right)^{1/p}}_{\text{strong }\ell_{p}\text{-norm of }(Tx_{j})} \leq c \sup_{\|a\|=1} \left(\sum_{j=1}^{n}|\langle x_{j},a\rangle|^{p}\right)^{1/p} .$$

$$T \in \Pi_p(X,Y)$$
, if $\pi_p(T) := \sup \pi_p^{(n)}(T) < \infty$.

• Let $1 \le p < \infty$. The absolutely *p*-summing norm of an operator $T: X \to Y$ with respect to *n* vectors is defined as $\pi_p^{(n)}(T) = \inf c$ such that for all $x_1, ..., x_n \in X$

$$\underbrace{\left(\sum_{j=1}^{n}\|Tx_{j}\|^{p}\right)^{1/p}}_{\text{strong }\ell_{p}\text{-norm of }(Tx_{j})} \leq c \sup_{\|a\|=1} \left(\sum_{j=1}^{n}|\langle x_{j},a\rangle|^{p}\right)^{1/p} .$$

$$T \in \Pi_p(X,Y)$$
, if $\pi_p(T) := \sup_n \pi_p^{(n)}(T) < \infty$.

• absolutely (p,2)-summing operators $(2 are defined similarly, replacing <math>w_p(x_j)$ by $w_2(x_j)$

• Let $1 \le p < \infty$. The absolutely *p*-summing norm of an operator $T: X \to Y$ with respect to *n* vectors is defined as $\pi_p^{(n)}(T) = \inf c$ such that for all $x_1, ..., x_n \in X$

$$\underbrace{\left(\sum_{j=1}^n \|Tx_j\|^p\right)^{1/p}}_{\text{strong ℓ_p-norm of }(Tx_j)} \leq c \underbrace{\sup_{\|a\|=1} \left(\sum_{j=1}^n |\langle x_j,a\rangle|^p\right)^{1/p}}_{:= w_p(x_j) = \text{weak ℓ_p-norm of }(x_j)}.$$

$$T \in \prod_p(X,Y)$$
, if $\pi_p(T) := \sup_n \pi_p^{(n)}(T) < \infty$.

- absolutely (p,2)-summing operators $(2 are defined similarly, replacing <math>w_p(x_j)$ by $w_2(x_j)$
- Classical results (due to König et al.) (i) $T \in \Pi_p(X,X) \Longrightarrow T$ is Riesz with eigenvalues in $\ell_{\max(p,2)}$ (ii) $T \in \Pi_{p,2}(X,X) \Longrightarrow T$ is Riesz with eigenvalues in $\ell_{p,\infty}$

• $(\Omega, \mathcal{F}, \mu)$ (σ -finite) measure space

$$k:\Omega imes \Omega o \mathbb{C} \quad (\mu \otimes \mu)$$
-measurable kernel

$$\sim$$
 integral operator $T_k f(x) = \int_{\Omega} k(x,t) f(t) d\mu(t)$

• $(\Omega, \mathcal{F}, \mu)$ (σ -finite) measure space

$$k: \Omega \times \Omega \to \mathbb{C}$$
 $(\mu \otimes \mu)$ -measurable kernel \sim integral operator $T_k f(x) = \int_{\Omega} k(x,t) f(t) \, d\mu(t)$

• Classical Hille-Tamarkin kernels. $(1 \le p < \infty$, 1/p + 1/p' = 1)

$$k \in L_p[L_{p'}]$$
, i.e. $\left(\int_{\Omega} \left(\int_{\Omega} |k(x,t)|^{p'} d\mu(t)\right)^{p/p'} d\mu(x)\right)^{1/p} < \infty$

 T_k maps L_p into itself, even more: T_k is absolutely p-summing.

$$\curvearrowright T_k: L_p \to L_p$$
 is Riesz with eigenvalues in $\ell_{\max(p,2)}$

• $(\Omega, \mathcal{F}, \mu)$ (σ -finite) measure space

$$k:\Omega\times\Omega\to\mathbb{C}\quad (\mu\otimes\mu)\text{-measurable kernel}$$

$$\sim$$
 integral operator $T_k f(x) = \int_{\Omega} k(x,t) f(t) d\mu(t)$

ullet Classical Hille-Tamarkin kernels. $(1 \le p < \infty$, 1/p + 1/p' = 1)

$$k \in L_p[L_{p'}]$$
, i.e. $\left(\int_{\Omega} \left(\int_{\Omega} |k(x,t)|^{p'} d\mu(t)\right)^{p/p'} d\mu(x)\right)^{1/p} < \infty$

 T_k maps L_p into itself, even more: T_k is absolutely p-summing.

$$rack T_k: L_p \to L_p$$
 is Riesz with eigenvalues in $\ell_{\max(p,2)}$

- Remarks.
 - T is Hilbert-Schmidt in $L_2 \iff T = T_k$ for some $k \in L_2[L_2]$
 - The kernel classes $L_p[L_{p'}]$ for different p's are incomparable!

• Let X be a Banach function space over $(\Omega, \mathcal{F}, \mu)$

i.e. a Banach space $X\subset L_0(\Omega,\mathcal{F},\mu)$ with the property:

$$f \in L_0$$
 and $g \in X$ s.t. $|f| \le g \Longrightarrow f \in X$ and $||f||_X \le ||g||_X$

• Let X be a Banach function space over $(\Omega, \mathcal{F}, \mu)$ i.e. a Banach space $X \subset L_0(\Omega, \mathcal{F}, \mu)$ with the property:

$$f \in L_0$$
 and $g \in X$ s.t. $|f| \leq g \Longrightarrow f \in X$ and $\|f\|_X \leq \|g\|_X$

• Köthe dual $X' := \{ f \in L_0 : \int_{\Omega} fg \, d\mu \text{ exists } \forall g \in X \}.$

$$-X'$$
 is always a closed subspace of the topological dual X^* — often $X'=X^*$, e.g. $L_n'=L_n^*=L_{p'}$ for $1\leq p<\infty$

• Let X be a Banach function space over $(\Omega, \mathcal{F}, \mu)$ i.e. a Banach space $X \subset L_0(\Omega, \mathcal{F}, \mu)$ with the property:

$$f \in L_0$$
 and $g \in X$ s.t. $|f| \leq g \Longrightarrow f \in X$ and $\|f\|_X \leq \|g\|_X$

• Köthe dual $X' := \{ f \in L_0 : \int_{\Omega} fg \, d\mu \text{ exists } \forall g \in X \}.$

-
$$X'$$
 is always a closed subspace of the topological dual X^* - often $X'=X^*$, e.g. $L_p'=L_p^*=L_{p'}$ for $1\leq p<\infty$

• Generalized Hille-Tamarkin kernels

$$k \in X[X']$$
 , i.e. $\left\| \left\| k(x,\cdot) \right\|_{X'} \right\|_{X} < \infty$,

where \boldsymbol{X} is any Banach function space.

• Let X be a Banach function space over $(\Omega, \mathcal{F}, \mu)$ i.e. a Banach space $X \subset L_0(\Omega, \mathcal{F}, \mu)$ with the property: $f \in L_0$ and $g \in X$ s.t. $|f| \leq g \Longrightarrow f \in X$ and $||f||_X \leq ||g||_X$

• Köthe dual
$$X' := \{ f \in L_0 : \int_\Omega fg \, d\mu \text{ exists } \forall g \in X \}.$$

-
$$X'$$
 is always a closed subspace of the topological dual X^* - often $X'=X^*$, e.g. $L_n'=L_n^*=L_{n'}$ for $1\leq p<\infty$

Generalized Hille-Tamarkin kernels

$$k \in X[X']$$
, i.e. $\| \|k(x,\cdot)\|_{X'} \|_X < \infty$,

where X is any Banach function space.

• Weakly singular kernels on a bounded subset $\Omega \subset \mathbb{R}^d$:

$$k(x,t) = \frac{\ell(x,t)}{\|x-t\|^{\alpha}} \qquad \text{with } \ell \in L_{\infty}(\Omega \times \Omega) \text{ and } 0 < \alpha < d$$

• Weakly singular kernels on a bounded subset $\Omega \subset \mathbb{R}^d$:

$$k(x,t) = \frac{\ell(x,t)}{\|x-t\|^{\alpha}} \qquad \text{ with } \ell \in L_{\infty}(\Omega \times \Omega) \text{ and } 0 < \alpha < d$$

 $p := d/(d-\alpha) \quad \curvearrowright \quad \forall x \in \Omega : \quad \underbrace{\|k(x,\cdot)\|_{p',\infty}} \leq \|\ell\|_{\infty}$

$$p:=d/(d-lpha) \ \curvearrowright \ orall x \in \Omega: \ \ \underbrace{\|k(x,\cdot)\|_{p',\infty}}_{\mathsf{Lorentz\ norm}} \le \|\ell\|_{lpha}$$

ullet Weakly singular kernels on a bounded subset $\Omega\subset\mathbb{R}^d$:

$$k(x,t) = \frac{\ell(x,t)}{\|x-t\|^{\alpha}} \qquad \text{ with } \ell \in L_{\infty}(\Omega \times \Omega) \text{ and } 0 < \alpha < d$$

Lorentz norm

• $p := d/(d-\alpha) \quad \curvearrowright \quad \forall x \in \Omega : \quad \underbrace{\|k(x,\cdot)\|_{p',\infty}} \leq \|\ell\|_{\infty}$

ullet Weakly singular kernels on a bounded subset $\Omega\subset\mathbb{R}^d$:

$$k(x,t) = \frac{\ell(x,t)}{\|x-t\|^{\alpha}} \qquad \text{with } \ell \in L_{\infty}(\Omega \times \Omega) \text{ and } 0 < \alpha < d$$

 $p := d/(d-\alpha) \ \curvearrowright \ \forall x \in \Omega : \ \underbrace{\|k(x,\cdot)\|_{p',\infty}}_{\text{Lorentz norm}} \le \|\ell\|_{\infty}$

$$\begin{array}{l} \bullet \ \ \text{eigenvalues are known:} \ (\lambda_n(T_k)) \in \begin{cases} \ell_{p,\infty} & \text{, if } p > 2 \\ \ell_2 & \text{, if } p < 2 \end{cases} \\ \text{limiting case } p = 2 \colon \quad (\lambda_n(T_k)) \notin \ell_{2,\infty} \\ \end{array}$$

• Note: $k \in L_{\infty}[L_{p',\infty}] \subset L_{p,1}[L'_{p,1}]$ \hookrightarrow Hille-Tamarkin type X[X'] with $X = L_{p,1}(\Omega)$

ullet Weakly singular kernels on a bounded subset $\Omega\subset\mathbb{R}^d$:

$$k(x,t) = \frac{\ell(x,t)}{\|x-t\|^{\alpha}} \qquad \text{with } \ell \in L_{\infty}(\Omega \times \Omega) \text{ and } 0 < \alpha < d$$

• $p:=d/(d-\alpha) \ \curvearrowright \ \forall x \in \Omega: \ \underbrace{\|k(x,\cdot)\|_{p',\infty}}_{\text{Lorentz norm}} \le \|\ell\|_{\infty}$

- Note: $k \in L_{\infty}[L_{p',\infty}] \subset L_{p,1}[L'_{p,1}]$ \hookrightarrow Hille-Tamarkin type X[X'] with $X = L_{p,1}(\Omega)$
- Our goal. Find (sharp) eigenvalue estimates for T_k with k ∈ X[X'].
 Question. Which geometric properties of X are responsible for the eigenvalue behaviour of such operators?

• A Banach space X has cotype p, $2 \le p < \infty$, if $\exists c > 0$ s.t.

$$\left(\sum_{j=1}^{n} \|x_j\|^p\right)^{1/p} \le c \,\mathbb{E} \Big\| \sum_{j=1}^{n} \varepsilon_j x_j \Big\|$$

for all $n \in \mathbb{N}$ and $x_1, \dots, x_n \in X$, where ε_i are i.i.d. Bernoulli r.v.

• A Banach space X has cotype p, $2 \le p < \infty$, if $\exists c > 0$ s.t.

$$\left(\sum_{j=1}^{n} \|x_j\|^p\right)^{1/p} \le c \,\mathbb{E} \Big\| \sum_{j=1}^{n} \varepsilon_j x_j \Big\|$$

for all $n \in \mathbb{N}$ and $x_1, \dots, x_n \in X$, where ε_j are i.i.d. Bernoulli r.v.

 \bullet A Banach function space X over (Ω,μ) is $p\text{-concave},\ 1\leq p<\infty,$ if

$$\left(\sum_{j=1}^{n} \|f_j\|^p\right)^{1/p} \le c \left\| \left(\sum_{j=1}^{n} |f_j|^p\right)^{1/p} \right\|$$

• A Banach space X has cotype p, $2 \le p < \infty$, if $\exists c > 0$ s.t.

$$\left(\sum_{j=1}^{n} \|x_j\|^p\right)^{1/p} \le c \,\mathbb{E} \left\| \sum_{j=1}^{n} \varepsilon_j x_j \right\|$$

for all $n \in \mathbb{N}$ and $x_1, \ldots, x_n \in X$, where ε_i are i.i.d. Bernoulli r.v.

 \bullet A Banach function space X over (Ω,μ) is $p\text{-concave},\ 1\leq p<\infty,$ if

$$\left(\sum_{j=1}^{n} \|f_j\|^p\right)^{1/p} \le c \left\| \left(\sum_{j=1}^{n} |f_j|^p\right)^{1/p} \right\|$$

• X Banach function space: X is 2-concave $\iff X$ has cotype 2 2 : <math>p-concave \implies cotype $p \implies (p + \varepsilon)$ -concave $\forall \varepsilon > 0$

• A Banach space X has cotype p, $2 \le p < \infty$, if $\exists c > 0$ s.t.

$$\left(\sum_{j=1}^{n} \|x_j\|^p\right)^{1/p} \le c \,\mathbb{E} \left\| \sum_{j=1}^{n} \varepsilon_j x_j \right\|$$

for all $n \in \mathbb{N}$ and $x_1, \dots, x_n \in X$, where ε_i are i.i.d. Bernoulli r.v.

 \bullet A Banach function space X over (Ω,μ) is $p\text{-concave},\ 1\leq p<\infty,$ if

$$\left(\sum_{j=1}^{n} \|f_j\|^p\right)^{1/p} \le c \left\| \left(\sum_{j=1}^{n} |f_j|^p\right)^{1/p} \right\|$$

- X Banach function space: X is 2-concave $\iff X$ has cotype 2 2 : <math>p-concave \implies cotype $p \implies (p + \varepsilon)$ -concave $\forall \varepsilon > 0$
- Examples. L_p is p-concave and has cotype $\max(p,2)$ cotype and concavity also known for $L_{p,q}$ and $L_p(\log L)_a$

- Notation:
 - -X a Banach function space
 - $-k \in X[X']$ a Hille-Tamarkin kernel
 - $T_k: X \to X$ the corresponding integral operator

- Notation:
 - -X a Banach function space
 - $-k \in X[X']$ a Hille-Tamarkin kernel
 - $T_k: X \to X$ the corresponding integral operator
- Theorem 1. Let X be p-concave, 2 .

 $\implies T_k$ is a Riesz operator with eigenvalues in $\ell_{\max(p,2)}$.

- Notation:
 - -X a Banach function space
 - $-k \in X[X']$ a Hille-Tamarkin kernel
 - $T_k: X \to X$ the corresponding integral operator
- Theorem 1. Let X be p-concave, 2 .

$$\Longrightarrow T_k$$
 is a Riesz operator with eigenvalues in $\ell_{\max(p,2)}$.

• Theorem 2. Let X be of cotype p, 2 .

 $\Longrightarrow T_k$ is a Riesz operator with eigenvalues in $\ell_{p,\infty}$.

- Notation:
 - X a Banach function space
 - $-k \in X[X']$ a Hille-Tamarkin kernel
 - $-T_k: X \to X$ the corresponding integral operator
- Theorem 1. Let X be p-concave, 2 .

 $\Longrightarrow T_k$ is a Riesz operator with eigenvalues in $\ell_{\max(p,2)}$.

• Theorem 2. Let X be of cotype p, 2 .

 $\Longrightarrow T_k$ is a Riesz operator with eigenvalues in $\ell_{p,\infty}$.

- Remarks.
 - covers classical Hille-Tamarkin AND weakly singular kernels
 - extends this to much larger kernel classes
 - shows the interplay with geometry of the underlying spaces

For both theorems the same strategy works:

– factorize T_k via a multiplication operator $M_q:L_\infty\to X$

- factorize T_k via a multiplication operator $M_q:L_\infty\to X$
- show that M_g is p-summing, resp. (p,2)-summing

- factorize T_k via a multiplication operator $M_q:L_\infty\to X$
- show that M_g is p-summing, resp. (p,2)-summing
- $\boldsymbol{\mathsf{-}}$ by the ideal property, the same holds for T_k

- factorize T_k via a multiplication operator $M_q:L_\infty\to X$
- show that M_g is p-summing, resp. (p,2)-summing
- by the ideal property, the same holds for T_k
- finally apply the classical eigenvalue results (König et al.)

- factorize T_k via a multiplication operator $M_q:L_\infty\to X$
- show that M_g is p-summing, resp. (p,2)-summing
- by the ideal property, the same holds for T_k
- finally apply the classical eigenvalue results (König et al.)
- Limiting case. Let $2 \le p < \infty$ and assume that X is NOT p-concave, but $(p+\varepsilon)$ -concave $\forall \varepsilon > 0$.
 - \sim eigenvalues of T_k are in $\bigcap_{n \to \infty} \ell_{p+\varepsilon}$

For both theorems the same strategy works:

- factorize T_k via a multiplication operator $M_q:L_\infty\to X$
- show that M_g is p-summing, resp. (p,2)-summing
- by the ideal property, the same holds for $T_{\boldsymbol{k}}$
- finally apply the classical eigenvalue results (König et al.)
- Limiting case. Let $2 \leq p < \infty$ and assume that X is NOT p-concave, but $(p+\varepsilon)$ -concave $\forall \varepsilon > 0$.
 - \curvearrowright eigenvalues of T_k are in $\bigcap_{\epsilon>0} \ell_{p+\epsilon}$

Question: Can one improve this?

For both theorems the same strategy works:

- factorize T_k via a multiplication operator $M_q:L_\infty\to X$
- show that M_g is p-summing, resp. (p,2)-summing
- by the ideal property, the same holds for $T_{\boldsymbol{k}}$
- finally apply the classical eigenvalue results (König et al.)
- Limiting case. Let $2 \le p < \infty$ and assume that X is NOT p-concave, but $(p+\varepsilon)$ -concave $\forall \varepsilon > 0$. \curvearrowright eigenvalues of T_k are in $\bigcap \ell_{p+\varepsilon}$
- \sim eigenvalues of T_k are in $\bigcap_{arepsilon>0}\ell_{p+arepsilon}$

Question: Can one improve this?

• Idea: One might expect that the p-concavity constants $M_{p,n}(X)$ of X evaluated with n vectors grow only moderately as $n \to \infty$, e.g. logarithmically. This is indeed the case in several examples!

• Theorem 3. Assume that $M_{p,n}(X) = \mathcal{O}(\log^a n)$ for some $2 \leq p < \infty$ and a > 0, and let $k \in X[X']$. Then T_k is a Riesz operator in X and its eigenvalues satisfy

$$\left(\sum_{i=1}^{n} |\lambda_j(T_k)|^p\right)^{1/p} \le c(1 + \log n)^a ||k||_{X[X']}.$$

In particular, $|\lambda_n(T_k)| = \mathcal{O}(n^{-1/p} \log^a n)$.

• Theorem 3. Assume that $M_{p,n}(X) = \mathcal{O}(\log^a n)$ for some $2 \leq p < \infty$ and a > 0, and let $k \in X[X']$. Then T_k is a Riesz operator in X and its eigenvalues satisfy

$$\left(\sum_{i=1}^{n} |\lambda_j(T_k)|^p\right)^{1/p} \le c(1 + \log n)^a ||k||_{X[X']}.$$

In particular, $|\lambda_n(T_k)| = \mathcal{O}(n^{-1/p} \log^a n)$.

• Lemma (Lorentz and Zygmund spaces, defined over [0,1]) Let $1 \le q < 2 \le p < \infty$ and a > 0. Then we have

$$M_{2,n}(L_{2,q}) = \mathcal{O}((\log n)^{1/q-1/2}), M_{p,n}(L_p(\log L)_a) = \mathcal{O}(\log^a n).$$

• Theorem 3. Assume that $M_{p,n}(X) = \mathcal{O}(\log^a n)$ for some $2 \leq p < \infty$ and a > 0, and let $k \in X[X']$. Then T_k is a Riesz operator in X and its eigenvalues satisfy

$$\left(\sum_{i=1}^{n} |\lambda_j(T_k)|^p\right)^{1/p} \le c(1 + \log n)^a ||k||_{X[X']}.$$

In particular, $|\lambda_n(T_k)| = \mathcal{O}(n^{-1/p} \log^a n)$.

• Lemma (Lorentz and Zygmund spaces, defined over [0,1]) Let $1 \leq q < 2 \leq p < \infty$ and a>0. Then we have

$$M_{2,n}(L_{2,q}) = \mathcal{O}((\log n)^{1/q-1/2}), M_{p,n}(L_p(\log L)_a) = \mathcal{O}(\log^a n).$$

Example. It is well known that the Fourier series

$$\sum_{n=1}^{\infty} n^{-1/p} e^{2\pi i nx} \quad , \quad 1$$

converges a.e. to a function $g \in L_{p',\infty}([0,1])$. Consider the integral operator T_k generated by the convolution kernel k(x,t) = g(x-t).

Example. It is well known that the Fourier series

$$\sum_{n=1}^{\infty} n^{-1/p} e^{2\pi i nx} \quad , \quad 1$$

converges a.e. to a function $g \in L_{p',\infty}([0,1])$. Consider the integral operator T_k generated by the convolution kernel k(x,t) = g(x-t).

Then we have:

- $-\lambda_n(T_k)=n^{-1/p}$ (eigenvalues of $T_k=$ Fourier coefficients of g)
- k belongs to X[X'], where $X = L_{p,1}([0,1])$
- $L_{p,1}$ has cotype p, if 2

Example. It is well known that the Fourier series

$$\sum_{n=1}^{\infty} n^{-1/p} e^{2\pi i nx} \quad , \quad 1$$

converges a.e. to a function $g \in L_{p',\infty}([0,1])$. Consider the integral operator T_k generated by the convolution kernel k(x,t) = g(x-t).

Then we have:

- $-\lambda_n(T_k)=n^{-1/p}$ (eigenvalues of $T_k=$ Fourier coefficients of g)
- k belongs to X[X'], where $X=L_{p,1}([0,1])$
- $L_{p,1}$ has cotype p, if 2
- \sim optimality of Theorem 2 (for cotype p spaces)

Example. It is well known that the Fourier series

$$\sum_{n=1}^{\infty} n^{-1/p} e^{2\pi i nx} \quad , \quad 1$$

converges a.e. to a function $g \in L_{p',\infty}([0,1])$. Consider the integral operator T_k generated by the convolution kernel k(x,t) = g(x-t).

Then we have:

- $-\lambda_n(T_k)=n^{-1/p}$ (eigenvalues of $T_k=$ Fourier coefficients of g)
- k belongs to X[X'], where $X = L_{p,1}([0,1])$
- $L_{p,1}$ has cotype p, if 2
- \sim optimality of Theorem 2 (for cotype p spaces)

Slightly more involved examples \bigcirc optimality of the remaining eigenvalue results mentioned in this talk.

- unified approach to Hille-Tamarkin and weakly singular operators

- unified approach to Hille-Tamarkin and weakly singular operators
- extension to more general kernel classes $X[X^\prime]$

- unified approach to Hille-Tamarkin and weakly singular operators
- extension to more general kernel classes $X[X^\prime]$
- interplay eigenvalues of operators
 ⇔ geometry of spaces

- unified approach to Hille-Tamarkin and weakly singular operators
- extension to more general kernel classes X[X']
- interplay eigenvalues of operators \iff geometry of spaces
- optimality for p-concave and cotype p-spaces

- unified approach to Hille-Tamarkin and weakly singular operators
- extension to more general kernel classes $X[X^\prime]$
- interplay eigenvalues of operators ←⇒ geometry of spaces
- optimality for p-concave and cotype p-spaces
- applications to Fourier analysis

- unified approach to Hille-Tamarkin and weakly singular operators
- extension to more general kernel classes X[X']
- interplay eigenvalues of operators
 ⇔ geometry of spaces
- optimality for p-concave and cotype p-spaces
- applications to Fourier analysis

THANK YOU FOR YOUR ATTENTION!