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(a) its kernel is finite-dimensional and
(b) its range is closed and has finite codimension.

@ Examples.
- compact operators
- power-compact operators (i.e. T is compact for some n € N)

@ Theorem. The spectrum o(T') of a Riesz operator T' has no
accumulation points (except possibly 0), and all non-zero A € o(T)
are eigenvalues of finite algebraic multiplicity, i.e.

mult()\) := dim (G ker((T - )Jd)”)) <0
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@ Ordering of the eigenvalues (counting multiplicities)
IAM(T)| > | X(T)>...>2MT)]>...20
If T has < n eigenvalues, we set A\, (T) = A\p11(T) =...=0.

@ The general problem
Find the optimal asymptotic eigenvalue behaviour of operators
belonging to certain classes of operators, i.e.

A(T)] 2 777 or | A (T)| ~ 777 as n — oo

@ Our goal
Solve this problem for a large class of integral operators, including
the classical Hille-Tamarkin and weakly singular kernels.

Tools
— absolutely summing norms of operators
— geometry of Banach spaces (cotype p and p-concavity)
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strong £p-norm of (T'z;) = wp(x;) = weak £p-norm of (z;)

T € I,(X,Y), if m(T) := sup 75" (T) < oo .

@ absolutely (p, 2)-summing operators (2 < p < o0)
are defined similarly, replacing wy(z;) by wa(x;)

o Classical results (due to Konig et al.)
(i) T ell,(X,X) =T is Riesz with eigenvalues in /,,,(,2)
(i) T e Il,2(X,X) =T is Riesz with eigenvalues in £}, o
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o (92, F,u) (o-finite) measure space
E:OxQ—>C (u® u)—measurable kernel
~ integral operator T}, f(z) = [ k( t) du(t)

o Classical Hille-Tamarkin kernels. (1 <p<oo,1/p+1/p' =1)

k€ Ly[L,y] </</|kxt|13du )> p/du(m))l/p<oo

T}, maps L, into itself, even more: T}, is absolutely p-summing.
~ T : Ly, — Ly is Riesz with eigenvalues in (.,

@ Remarks.
— T is Hilbert-Schmidt in Ly <= T = T}, for some k € La[Ls]

— The kernel classes L,[L,/] for different p's are incomparable!
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— X' is always a closed subspace of the topological dual X*
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@ Generalized Hille-Tamarkin kernels

ke X[X/]v Ie. H Hk(x7>HX/ | X < 00,

where X is any Banach function space.

. . T, M, .
@ ~ factorization Tp: X -5 L —2X with

(@) = [k(z,)|x € X, o) =20 € L [X']
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Weakly singular kernels on a bounded subset Q C R¢:
Lz, t
k(z,t) = ” (x’tﬁa with £ € Loo(2 x Q) and 0 < e < d
7 —

pi=d/(d—a) ~ Yo eQ: [k, oo < 1
—_————

Lorentz norm

Kp,oo ,ifp > 2

ly ,if p< 2
limiting case p =2: (A (Tk)) ¢ l2.00

eigenvalues are known: (A, (T%)) €

Note: k€ Loo[Ly o0] C LpalLy 1]
~  Hille-Tamarkin type X[X'] with X = L, 1(2)

Our goal. Find (sharp) eigenvalue estimates for T}, with k € X[X'].

Question. Which geometric properties of X are responsible for the
eigenvalue behaviour of such operators?
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@ A Banach space X has cotype p, 2 < p < oo, if d¢ > 0 s.t.

(D lail?) ™ < B[ S e
j=1 J=1
forall n € N and x1,...,2, € X, where ¢; are i.i.d. Bernoulli r.v.

@ A Banach function space X over (€2, 1) is p-concave, 1 < p < oo, if
n p 1/10 i P l/p
(i) " <el|(1mm |
j=1 j=1

@ X Banach function space: X is 2-concave <= X has cotype 2
2 < p < oo: p-concave = cotype p => (p + &)-concave Ve > 0

e Examples. L, is p-concave and has cotype max(p, 2)
cotype and concavity also known for L, , and L,(log L),
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4. Eigenvalue estimates

o Notation:
— X a Banach function space
— k € X[X'] a Hille-Tamarkin kernel
— Ty : X — X the corresponding integral operator

@ Theorem 1. Let X be p-concave, 2 < p < oc.

= T is a Riesz operator with eigenvalues in (. (,2)-

@ Theorem 2. Let X be of cotype p, 2 < p < c.

= T}, is a Riesz operator with eigenvalues in 7}, ..

@ Remarks.
— covers classical Hille-Tamarkin AND weakly singular kernels
— extends this to much larger kernel classes
— shows the interplay with geometry of the underlying spaces
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Sketch of the proofs.

For both theorems the same strategy works:

— factorize T}, via a multiplication operator M, : Lo, — X
— show that M, is p-summing, resp. (p,2)-summing

— by the ideal property, the same holds for T},

— finally apply the classical eigenvalue results (Konig et al.)

@ Limiting case. Let 2 < p < oo and assume that X is
NOT p-concave, but (p + £)-concave Ve > 0.

~ eigenvalues of T, are in () (-
e>0

Question: Can one improve this?

@ Idea: One might expect that the
p-concavity constants My, ,(X) of X evaluated with n vectors

grow only moderately as n — oo, e.g. logarithmically.
This is indeed the case in several examples!
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@ Theorem 3. Assume that M, ,(X) = O(log” n) for some 2 < p < oo
and @ > 0, and let k € X[X']. Then T}, is a Riesz operator in X and
its eigenvalues satisfy

- » 1/p “
(D @or) ™ < e+ log m)lklLxpx, -
j=1

In particular, | A, (T)| = O(n~'/Plog"n).

e Lemma (Lorentz and Zygmund spaces, defined over [0, 1])
Let 1 <g<2<p<ooanda>0. Then we have

Moy (Lag) = O((logn)/471/2) | My, (Lp(log L)s) = O(log™ n).

@ combining the above results ~ improved eigenvalue estimates
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5. Some remarks on optimality
Example. It is well known that the Fourier series

(o]
Zn*l/pe%m‘” , l<p<oo

n=1

converges a.e. to a function g € L,y ([0, 1]). Consider the integral
operator T}, generated by the convolution kernel  k(z,t) = g(x —t).

Then we have:

— M(Ti) = n~'/P (eigenvalues of T}, = Fourier coefficients of g)
— k belongs to X[X'], where X = L, 1([0,1])
— L, 1 has cotype p, if 2 < p < o0

~ optimality of Theorem 2 (for cotype p spaces)

Slightly more involved examples ~ optimality of the remaining
eigenvalue results mentioned in this talk.
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