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Banach space X is called a Riesz operator, if for all complex
numbers λ 6= 0 the operator T − λId is Fredholm, i.e.
(a) its kernel is finite-dimensional and
(b) its range is closed and has finite codimension.

Examples.
- compact operators
- power-compact operators (i.e. Tn is compact for some n ∈ N)

Theorem. The spectrum σ(T ) of a Riesz operator T has no
accumulation points (except possibly 0), and all non-zero λ ∈ σ(T )
are eigenvalues of finite algebraic multiplicity, i.e.

mult(λ) := dim

( ∞⋃
n=1

ker
(

(T − λId)n
))

<∞ .
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|λ1(T )| ≥ |λ2(T )| ≥ . . . ≥ |λn(T )| ≥ . . . ≥ 0

If T has < n eigenvalues, we set λn(T ) = λn+1(T ) = . . . = 0.

The general problem
Find the optimal asymptotic eigenvalue behaviour of operators
belonging to certain classes of operators, i.e.

|λn(T )| � ??? or |λn(T )| ∼ ??? as n→∞

Our goal
Solve this problem for a large class of integral operators, including
the classical Hille-Tamarkin and weakly singular kernels.

Tools
– absolutely summing norms of operators
– geometry of Banach spaces (cotype p and p-concavity)
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n
π

(n)
p (T ) <∞ .

absolutely (p, 2)-summing operators (2 < p <∞)
are defined similarly, replacing wp(xj) by w2(xj)

Classical results (due to König et al.)
(i) T ∈ Πp(X,X) =⇒T is Riesz with eigenvalues in `max(p,2)

(ii) T ∈ Πp,2(X,X) =⇒T is Riesz with eigenvalues in `p,∞
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(∫
Ω

(∫
Ω
|k(x, t)|p′

dµ(t)
)p/p′

dµ(x)

)1/p

<∞

Tk maps Lp into itself, even more: Tk is absolutely p-summing.
y Tk : Lp → Lp is Riesz with eigenvalues in `max(p,2)

Remarks.

– T is Hilbert-Schmidt in L2 ⇐⇒ T = Tk for some k ∈ L2[L2]

– The kernel classes Lp[Lp′ ] for different p’s are incomparable!
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Generalized Hille-Tamarkin kernels

k ∈ X[X ′] , i.e.
∥∥ ‖k(x, ·)‖X′

∥∥
X
<∞ ,

where X is any Banach function space.

y factorization Tk : X T`−→ L∞
Mg−→ X with

g(x) = ‖k(x, ·)‖X′ ∈ X , `(x, t) = k(x,t)
g(x) ∈ L∞[X ′]
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with ` ∈ L∞(Ω× Ω) and 0 < α < d

p := d/(d− α) y ∀x ∈ Ω : ‖k(x, ·)‖p′,∞︸ ︷︷ ︸
Lorentz norm
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eigenvalues are known: (λn(Tk)) ∈

{
`p,∞ , if p > 2
`2 , if p < 2

limiting case p = 2: (λn(Tk)) /∈ `2,∞

Note: k ∈ L∞[Lp′,∞] ⊂ Lp,1[L
′
p,1]

y Hille-Tamarkin type X[X ′] with X = Lp,1(Ω)

Our goal. Find (sharp) eigenvalue estimates for Tk with k ∈ X[X ′].
Question. Which geometric properties of X are responsible for the
eigenvalue behaviour of such operators?
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A Banach function space X over (Ω, µ) is p-concave, 1 ≤ p <∞, if

( n∑
j=1

‖fj‖p
)1/p

≤ c
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X Banach function space: X is 2-concave ⇐⇒X has cotype 2
2 < p <∞: p-concave =⇒ cotype p =⇒ (p+ ε)-concave ∀ε > 0

Examples. Lp is p-concave and has cotype max(p, 2)
cotype and concavity also known for Lp,q and Lp(logL)a
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4. Eigenvalue estimates

Notation:
– X a Banach function space
– k ∈ X[X ′] a Hille-Tamarkin kernel
– Tk : X → X the corresponding integral operator

Theorem 1. Let X be p-concave, 2 < p <∞.

=⇒ Tk is a Riesz operator with eigenvalues in `max(p,2).

Theorem 2. Let X be of cotype p, 2 < p <∞.

=⇒ Tk is a Riesz operator with eigenvalues in `p,∞.

Remarks.
– covers classical Hille-Tamarkin AND weakly singular kernels
– extends this to much larger kernel classes
– shows the interplay with geometry of the underlying spaces
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Sketch of the proofs.
For both theorems the same strategy works:
– factorize Tk via a multiplication operator Mg : L∞ → X
– show that Mg is p-summing, resp. (p, 2)-summing
– by the ideal property, the same holds for Tk
– finally apply the classical eigenvalue results (König et al.)

Limiting case. Let 2 ≤ p <∞ and assume that X is
NOT p-concave, but (p+ ε)-concave ∀ε > 0.
y eigenvalues of Tk are in

⋂
ε>0

`p+ε

Question: Can one improve this?

Idea: One might expect that the

p-concavity constants Mp,n(X) of X evaluated with n vectors

grow only moderately as n→∞, e.g. logarithmically.
This is indeed the case in several examples!
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and a > 0, and let k ∈ X[X ′]. Then Tk is a Riesz operator in X and
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)1/p

≤ c(1 + log n)a‖k‖X[X′] .

In particular, |λn(Tk)| = O(n−1/p loga n) .

Lemma (Lorentz and Zygmund spaces, defined over [0, 1])
Let 1 ≤ q < 2 ≤ p <∞ and a > 0. Then we have

M2,n (L2,q) = O
(
(log n)1/q−1/2

)
, Mp,n (Lp(logL)a) = O(loga n) .

combining the above results y improved eigenvalue estimates
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Example. It is well known that the Fourier series

∞∑
n=1

n−1/p e2πinx , 1 < p <∞

converges a.e. to a function g ∈ Lp′,∞([0, 1]). Consider the integral
operator Tk generated by the convolution kernel k(x, t) = g(x− t) .

Then we have:

– λn(Tk) = n−1/p (eigenvalues of Tk = Fourier coefficients of g)

– k belongs to X[X ′], where X = Lp,1([0, 1])
– Lp,1 has cotype p, if 2 < p <∞

y optimality of Theorem 2 (for cotype p spaces)

Slightly more involved examples y optimality of the remaining
eigenvalue results mentioned in this talk.
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– applications to Fourier analysis
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