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1 Introduction

Notation (definitions in a while)

Fs
p q – the usual Lizorkin-Triebel space

Sr̄
p qF – the Lizorkin-Triebel space with dominating mixed

derivatives

Sr̄, α
p q F – the logarithmic (or refined) Lizorkin-Triebel space

with dominating mixed derivatives

r instead of r̄ if all components of r̄ are equal, similarly for α
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Our general concern:

Properties of Sobolev and more general spaces of weakly
differentiable functions, when we neglect some of the deriva-
tives

Specifically: We will be concerned with
• limiting imbeddings
• inequality of Gagliardo-Nirenberg type for Lizorkin-Triebel

spaces with dominating mixed smoothness and logarith-
mic tuning,

4



2 Spaces and their reduced variants

F and F−1 the Fourier transform and its inverse, resp.,

S(Rn) the space of rapidly decreasing C∞ functions on Rn

and S ′(Rn) for its dual, the space of tempered distributions

Let ϕ0 ∈ C∞(RN), 0 ≤ ϕ0(x) ≤ 1, ϕ0(x) = 1 if |x| ≤ 1, and
ϕ0(x) = 0 if |x| ≥ 2. Put

ϕ1(x) = ϕ0(x/2)− ϕ0(x),
ϕj(x) = ϕ1(2−j+1x), j = 2, 3, . . . .

Then ∑∞
j=0 ϕj(x) = 1, x ∈ Rn.
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The system of functions {ϕj} is the smooth dyadic decom-
position of the unity in Rn.
The usual Lizorkin-Triebel space Fs

p q:
Let 0 < p < ∞, 0 < q ≤ ∞, r ∈ R,

‖ f |Fr
p q‖ =

∥∥∥∥( ∞

∑
j=0

∣∣∣2jrF−1
[

ϕjF f
]
( . )
∣∣∣q)1/q∣∣∣Lp

∥∥∥∥
and

Fr
p q(Rm×Rn) = { f ∈ S ′(Rm×Rn) : ‖ f |Fr

p q‖ < ∞}.

Connections with the “classical” spaces:

Fm
p 2(Rn) = Wm

p (Rn) if 1 < p < ∞, m ∈N0.
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The Lizorkin-Triebel space with dominating mixed deriva-
tives and logarithmic tuning (for the special splitting Rm+n =
Rm×Rn):

{ϕj(x)}∞
j=0 and {ψj(x)}∞

j=0 be a smooth dyadic resolution of
unity in Rm and Rn, respectively
0 < p < ∞, 0 < q ≤ ∞, r̄ = (r1, r2) ∈ R2, α = (α1, α2)
We put

‖ f |Sr̄, α
p q F‖ =

∥∥∥∥( ∞

∑
j=0

∞

∑
k=0

∣∣∣2jr1+kr2(1 + j)α1(1 + k)α2

F−1
[

ϕj⊗ ψkF f
]
( . )
∣∣∣q)1/q∣∣∣Lp

∥∥∥∥
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and

Sr̄, α
p q F(Rm×Rn) = { f ∈ S ′(Rm×Rn) : ‖ f |Sr̄, α

p q F‖ < ∞}.

If α = (0, 0), we get the usual Lizorkin-Triebel spaces with
dominating mixed smoothness.
Note that

Ss̄
p 2F(Rm×Rn) = Ss̄

pW(Rm×Rn)

= { f ∈ S ′(Rm×Rn) :

Dβ
x Dγ

y f ∈ Lp(Rm×Rn), |β| ≤ s1, |γ| ≤ s2}

if s̄ = (s1, s2) ∈N2
0 and 1 < p < ∞.

More general setting: p and q can be vectors.
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References:
The Fourier analysis theory of Ss̄

p̄ q̄F developed in 1980s
(Schmeisser). The idea of such spaces goes back to
Nikol’skii.
The logarithmic variant: Farkas and Leopold (2006), Triebel
(2009, the case α1 = α2), Seyfried (2009, 1 < p < ∞,
1 ≤ q ≤ ∞). For r1, r2 > 0 the above spaces can be charac-
terized by means of differences as spaces with logarithmic
smoothness (Seyfried 2009).
Lizorkin and Nikol’skii (1990)—spaces with more general or-
der of smoothness.
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One classical prominent example of spaces with mixed
derivatives—R. A. Adams 1986:

Let M = (αij), i = 1, . . . , C(N, k), j = 1, . . . , N, be a matrix
whose entries are 0 or 1; given 1 ≤ p < ∞ assume that
∑N

j=1 αij = k, 1 ≤ k < N/p, C(N, k) is the number of all such
rows (the respective combination number). Denote the rows
of M by αi.

Then

WM
p = { f ∈ Lp : Dαi f ∈ Lp, αi is a row of M}

is the reduced Sobolev space.
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Adams proved that under the above assumptions

WM
p ↪→ Lq with

1
q

=
1
p
− k

N
.

Further reductions are possible.

Suppose it is possible to choose from M a square submatrix
such that all the sums over columns are the same and equal
to k, i.e. to sums over the rows (the order of smoothness).
Then the Sobolev imbeddings holds again (1 ≤ p < ∞, kp <
N).
It is tempting to call such matrices magic squares.
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More generally, magic squares are square matrices, where
sums over rows and columns are the same; possibly they
have also some other puzzling properties. Historicians say
that they attracted attention of curious people already in
China, 3 000 years ago.

Being in Germany we make a short excursion into German
Rennaisance.
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Albrecht Dürer
* May 21, 1471, Imperial Free City of Nürnberg
† April 6, 1528, Nürnberg
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A real mathematics came much later: Birkhoff-von Neumann
theorem on doubly stochastic matrices.

A square matrix is doubly stochastic iff it is a convex com-
bination of permutation matrices. Permutation matrices are
exactly all extremal points of the set of doubly stochastic ma-
trices.

It is, however, not the end of possible reductions. If one can
omit some rows in such a way that sums over columns are
the same and the smoothness is a integer multiple of these
sums, then the Sobolev imbedding holds again.

Probably there is no algebraic machinery behind it (repre-
sentations for “parts” of doubly stochastic matrices) or it is
well hidden in some abstract theories.
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An imbedding theorem for very general spaces with general-
ized (Liouville) derivatives
Magaril-Il’yaev, 1986.

A scheme of using it will follow, demonstrated on an example.
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3 Limiting imbeddings via Fourier analytic approach

Our interest in this section: contribution to limiting imbedding
theory for spaces with dominating mixed smoothness. Re-
sults are scattered in various journals. Major references for
joint papers with H.-J. Schmeisser:

Limiting imbeddings. The case of missing derivatives.
Ricerche Mat. XLV(1996), 423-447.
Imbeddings of Brezis-Wainger type. The case of missing
derivatives. Proc. Roy. Soc. Edinburgh 131 (2001), 667-700.
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Refined limiting imbeddings for Sobolev spaces of vector-
valued functions. J. Funct. Anal. 227 (2005), 372-388.
Critical imbeddings with multivariate rearrangements. Studia
Math. 181(2007), 255-284.
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Let us consider the archetypal case N = 4, k = 2, and

M = {(1, 1, 0, 0), (1, 0, 1, 0), (0, 1, 0, 1), (0, 0, 1, 1)}.
Let f ∈WM

2 (R4) be a C∞ function supported in the unit ball.
Then, using just real analysis means, one can show that

‖ f |Lq‖ ≤ cq‖ f |WM
2 ‖,

whereas in the isotropic case,

‖ f |Lq‖ ≤ cq1/2‖ f |W2
2‖,
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Recall that such asymptotic estimates are the usual way how
to prove that a function is exponentially integrable.

If f is a function Wk,p(Ω), where Ω ⊂ RN is a bounded do-
main with a smooth boundary, 1 < p < ∞, and kp = N, then
f is in the Orlicz space LΦ(Ω) with Φ(t) = exp tN/(N−k)− 1.
The last fact can be expressed in terms of the asymptotic be-
haviour of Lq-norms of the function k; it reads here

‖u|Lq‖ ≤ cq1−k/N‖ f |Wk,p‖.

For unbounded domains one has to modify suitably Φ.
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Let p̄ = (p1, . . . , pm), q̄ = (q1, . . . , qm), r̄ = (r1, . . . , rm) with
0 < pj < ∞, 0 < qj ≤ ∞, and −∞ < rj < ∞, j = 1, . . . , m,
then
• (i)]

Sr̄
p̄,q̄B(Rn1 × · · · ×Rnm) = { f ∈ S ′(RN);

‖ f |Sr̄
p̄,q̄B‖ = ‖2k1r1+···+kmrm fk1,...,km

(x)|L p̄|`q̄‖ < ∞},

(ii)

Sr̄
p̄,q̄F(Rn1 × · · · ×Rnm) = { f ∈ S ′(RN);

‖ f |Sr̄
p̄,q̄F‖ = ‖2k1r1+···+kmrm fk1,...,km

(x)|` p̄|Lq̄‖ < ∞}.
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3.1 Theorem. Let 1 < pj < qj < ∞, rj = nj/pj (j = 1, . . . , m).
If 2 ≤ p1 ≤ p2 ≤ · · · ≤ pm, then there exists a constant c
independent of q̄ and f such that

‖ f |Lq̄(Rn1 × · · · ×Rnm)‖

≤ c
m
∏
j=1

q
1−1/pj

j ‖ f |Sr̄
p̄,2̄F(Rn1 × · · · ×Rnm)‖

for all f ∈ Sr̄
p̄,2̄F(Rn1 × · · · ×Rnm).

25



Let

f j(ξ) := [F−1(ϕjF f )](ξ) j = 1, 2, . . . ,

Let 0 < p ≤ ∞, 0 < q ≤ ∞, s ∈ R1, α ∈ R1, then

B(s,α)
pq =

{
f ∈ S ′ : ‖ f |B(s,α)

pq ‖

=
( ∞

∑
j=0

2jsq(j + 1)−αq‖ f j(x)|Lp‖q
)1/q

< ∞
}

(with the corresponding modification if q = ∞).
(Leopold 1998.)

26



Our interest: the spaces B(1,α)
∞∞ , α > 0, the logarithmic Zyg-

mund spaces, defined by

B(1,α)
∞∞ = C(1,α) =

{
f ∈ C : ‖ f |C(1,α)‖

= ‖ f |L∞‖+ sup
|h|≤1/2

‖∆2
h f (x)|L∞‖

|h|
[
log
(

1 + 1
|h|

)]α < ∞
}
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Lipschitzian counterpart of these spaces:
For α > 0 we define the logarithmic Lipschitz space (of order
α) Lip(1, α) as

Lip(1, α) =
{

f ∈ C : ‖ f |Lip(1, α)‖

= ‖ f |L∞‖+ sup
|h|<1/2

‖∆h f (x)|L∞‖

|h|
[
log
(

1 + 1
|h|

)]α < ∞
}

For f ∈ Lip(1, α) we also talk about the almost Lipschitz con-
tinuous functions if there is no need to specify the particular
value of α.
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WN/p+1
p (Ω) (∂Ω sufficiently regular) is imbedded into any

Hölder space Cα(Ω) with 0 < α < 1. On the other hand,
functions in WN/p+1

p (Ω) need not be Lipschitz continuous.

Brézis and Wainger:

| f (x)− f (y)| ≤ C|x− y|| log |x− y| |1−1/p‖ f |WN/p+1
p ‖,

x, y ∈ RN, |x− y| < 1/2,
(3.1)

for functions in WN/p+1
p , 1 < p < ∞.
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We shall survey some of the results.

A rule of thumb: Neglecting a proper subset of derivatives in
the sublimiting situation does not affect the Sobolev imbed-
ding, however, norms of imbeddings increase, which in turn
gives a worse exponential integrability in the limiting case.
Sickel and Triebel 1995:

BN/p+1
p q ↪→ B1

∞ q,

FN/p+1
p q ↪→ B1

∞ p,

and also
B1

∞ q ↪→ C1 (or Lip 1)
if and only if 0 < q ≤ 1.
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3.2 Theorem. The following imbeddings hold:

(i) If 1 < q ≤ ∞, then

B1
∞ q ↪→ Lip(1, 1/q′).

(ii) If 0 < α < ∞, then

B(1,α)
∞1 ↪→ Lip(1, α).

In our terminology the imbedding theorem due to Brézis and
Wainger reads

FN/p+1
p 2 ↪→ Lip(1, 1/p′).

31



Further definitions—we shall restrict ourselves to the special
splitting RN = Rn1×Rn2.

We put p̄ = (p1, p2), 1̄ = (1, 1), 2̄ = (2, 2), ∞̄ = (∞, ∞),
0̄ = (0, 0), x = (x1, x2) with x1 ∈ Rn1 and x2 ∈ Rn2, etc. Let
{ϕ(ξ1)}∞

j=0 and {ψ(ξ1)}∞
j=0 be a smooth dyadic resolution of

unity in Rn1 and Rn2, respectively. For f ∈ S ′(RN) we put

f j,k(x1, x2) := [F−1ϕj(ξ1)ψk(ξ2)F f ](x1, x2)

(j, k = 0, 1, . . . ).
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(i) Let p̄ = (p1, p2), q̄ = (q1, q2), r̄ = (r1, r2) with
0 < pi, qi,≤ ∞, ri ∈ R1 (i = 1, 2). Then

Sr̄
p̄ q̄B(Rn1×Rn2) = { f ∈ S ′(RN) : ‖ f |Sr̄

p̄ q̄B‖
= ‖2r1j+r2k f j,k(x1, x2)|Lp1|x1|Lp2|x2|`q1|j|`q2|k‖ < ∞}

and

SBr̄
p̄ q̄(Rn1×Rn2) = { f ∈ S ′(RN) : ‖ f |SBr̄

p̄ q̄‖
= ‖2r1j+r2k f j,k(x1, x2)|Lp1|x1|`q1|j|Lp2|x2||`q2|k‖ < ∞}.

(ii) Let additionally 0 < pi < ∞ (i = 1, 2). Then

Sr̄
p̄ q̄F(Rn1×Rn2) = { f ∈ S ′(RN) : ‖ f |Sr̄

p̄ q̄F‖
= ‖2r1j+r2k f j,k(x1, x2)|`q1|j|`q2|k|Lp1|x1|Lp2|x2‖ < ∞}.
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The previous claims can be generalized to mixed norm
setup.
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A diagram for the BW-imbeddings

Wm+1
N/m = (∆−E)−1/2Wm

N/m (∆−E)−1/2WSN/m = WS+1
N/m

B1
∞ N/m = (∆−E)−1/2B0

∞ N/m (∆−E)−1/2S0̄
∞ N/mB

B(1,α)
∞ 1

Lip(1, (N−m)/N) B(1,(N−m)/N)
∞ N/m

Lip(1, α) B(1,β)
∞ 1

Lip(1, β)

-

? ?

?

α> N−m
N

HHHH
HHH

HHHj

�
���

���
���� ?

HH
HHH

HHH
HHHj ? ?

β>2· N−m
N

?

α<β

��
���

���
����
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4 Gagliardo-Nirenberg inequalities

Natural interest in other relevant relations between the
norms.

Brezis and Mironescu proved in 2001 that

‖ f |Fs
p q(Rn)‖ ≤ ‖ f |Fs1

p1 q1(Rn)‖θ ‖ f |Fs2
p2 q2(Rn)‖1−θ (4.1)

provided that 0 < q, q1, q2 ≤ ∞, 0 < θ < 1, 1
p = θ

p1
+ 1−θ

p2
, and

s = θs1 + (1− θ)s2.
36



If we pass to spaces with dominating mixed smoothness
Sr

p qF(Rn), the situation unfortunately and also rather sur-
prisingly changes.
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Hansen proved in 2009 that

‖ f |Ss
p qF(Rn)‖ ≤ c‖ f |Ss1

p1 q1F(Rn)‖θ ‖ f |Ss2
p2 q2F(Rn)‖1−θ

(4.2)
iff

0 < θ < 1,
1
p

=
θ

p1
+

1− θ

p2
, s = θs1 + (1− θ)s2

and
1
q
≤ θ

q1
+

1− θ

q2
.

(4.3)

The problem is what happens with inequalities of type (4.2)
for refined spaces with dominating mixed smoothness with-
out the last condition in (4.3).
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First let us observe that inequality of type (4.2) can be proved
just with help of Hölder’s inequality provided equality is sup-
posed in the formula for q.

4.1 Proposition. Assume that 0 < p1, p2 < ∞, 0 < q1, q2 < ∞,
ū, v̄ ∈ R2, 0 < θ < 1, β, γ ∈ R2. Let

1
p

=
θ

p1
+

1− θ

p2
,

1
q

=
θ

q1
+

1− θ

q2

and

r̄ = θū + (1− θ)v̄ α = θβ + (1− θ)γ.

Then

‖ f |Sr̄, α
p q F(Rn)‖ ≤ c‖ f |Sū, β

p1 q1F(Rn)‖θ ‖ f |Sv̄, γ
p2 q2F(Rn)‖1−θ.

(4.4)
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Proof. Let us write

f jk(x) = F−1[φj⊗ ψkF f ](x), x ∈ Rm×Rn, (j, k) ∈N2
0,

and

|ajk(x)| =
∣∣∣2jr1+kr2(1 + j)α1(1 + k)α2 f jk(x)

∣∣∣
=
∣∣∣2ju1+ku2(1 + j)β1(1 + k)β2 f jk(x)

∣∣∣θ∣∣∣2jv1+kv2(1 + j)γ1(1 + k)γ2 f jk(x)
∣∣∣1−θ

= |bjk(x)|θ|cjk(x)|1−θ.
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Then the claim follows by repeating application of Hölder’s
inequality with 1

p = θ
p1

+ 1−θ
p2

and 1
q = θ

q1
+ 1−θ

q2
.

Indeed,∥∥∥∥( ∞

∑
j=0

∞

∑
k=0
|ajk( . )|q

)1/q∣∣Lp

∥∥∥∥
=
∥∥∥∥( ∞

∑
j=0

∞

∑
k=0
|bjk( . )|θq|cjk( . )|(1−θ)q

)1/q∣∣Lp

∥∥∥∥
≤
∥∥∥∥( ∞

∑
j=0

∞

∑
k=0
|bjk( . )|q1

)θ/q1
( ∞

∑
j=0

∞

∑
k=0
|cjk( . )|q2

)(1−θ)/q2∣∣Lp

∥∥∥∥
≤ ‖{bjk( . )}|Lp1(`q1)‖θ‖{cjk( . )}|Lp2(`q2)‖1−θ.
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We get two consequences:
Choosing β = 0 we obtain

‖ f |Sū, α
p q F‖ ≤ c ‖ f |Sū

p ∞F‖ if α < −1
q

.

Further,

‖ f |Sr̄, α
p q F(Rn)‖ ≤ c‖ f |Sū

p1 ∞F(Rn)‖θ ‖ f |Sv̄
p2 ∞F(Rn)‖1−θ

(4.5)
holds for 0 < q ≤ ∞, α = (α1, α2) with αi < −1/q (i = 1, 2),
and

1
p

=
θ

p1
+

1− θ

p2
, r̄ = θū + (1− θ)v̄,

which is inequality of type (4.1) for spaces with dominating
mixed smoothness, where we pay some logarithmic price.
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Let now u1 = u2 = u and v1 = v2 = v. Then the above
estimate (4.5) can be improved with respect to α.

4.2 Theorem. Let 0 < p1, p2 < ∞ (p1 6= p2), 0 < q < ∞,
u, v ∈ R, and let

r = θu + (1− θ)v,
1
p

=
θ

p1
+

1− θ

p2
.

Then

‖ f |Sr̄,−1/(2q)
p q F(Rn)‖ ≤ c‖ f |Su

p1 ∞F(Rn)‖θ ‖ f |Sv
p2 ∞F(Rn)‖1−θ

(4.6)
for all f ∈ Su

p1 ∞F(Rm×Rn) ∩ Sv
p2 ∞F(Rm×Rn).
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The proof cannot be reproduced here. The first main ingredi-
ence is the following remarkable estimate due to Brezis and
Mironescu:
4.3 Proposition. Let 0 < θ < 1, 0 < q < ∞, and r = θu + (1−
θ)v. Then there exists c > 0 such that∥∥∥{2`rd`}|`q

∥∥∥ ≤ c
∥∥∥{2`ud`}|`∞

∥∥∥θ ∥∥∥{2`vd`}|`∞

∥∥∥1−θ
.

The second key point is inequality, expressing a fine balance
for diagonal sums:

∑
j+k=`

[(1 + j)(1 + k)]−1/2 ∼ 1

with equivalence independent of ` ∈N.
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4.4 Remark. We can replace f jk(x) by (1 + j)α(1 + k)α f jk(x)
with arbitrary α ∈ R in the above considerations. Hence un-
der the assumptions of Theorem 4.2 we get∥∥∥ f |Sr, α−1/(2q)

p q F(Rm×Rn)
∥∥∥

≤ c
∥∥∥ f |Su, α

p1 ∞F(Rm×Rn)
∥∥∥θ ∥∥∥ f |Sv, α

p2 ∞F(Rm×Rn)
∥∥∥1−θ

for all f ∈ Su, α
p1 ∞F(Rm ×Rn) ∩ Sv, α

p2 ∞F(Rm ×Rn) and arbi-
trary real α.

No relevant results of this sort for the reduced spaces (except
the easy case p = 1).
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