Maximal operators of Fourier multipliers

Petr Honzík

Academy of Sciences, Prague, Czech Republic

September 22, 2011

Motivation: Maximal Bochner-Riesz

Bochner-Riesz

$$m_{\alpha} = (1 - |\xi|^2)_+^{\alpha}$$

 $B_R^{\alpha} f = \mathcal{F}^{-1} (m_{\alpha} (\cdot / R) \hat{f})$

Well known theory.

Maximal Bochner-Riesz

$$M_{\alpha}f = \sup_{R} |B_{R}^{\alpha}f|$$

Motivation: Maximal hyperbolic Bochner-Riesz

Hyperbolic Bochner-Riesz

On \mathbb{R}^2

$$m^{\alpha}(\xi_1, \xi_2) = ((1 - (\xi_1 \xi_2)^2)_+^{\alpha})_+^{\alpha}$$

 $T_R^{\alpha} f = \mathcal{F}^{-1}(m^{\alpha}(\cdot/R)\hat{f})$

The L^p boundedness of T^α was studied by El-Kohen and Carbery (full interplay p, α).

Maximal hyperbolic Bochner-Riesz

$$M^{\alpha}f = \sup_{R} |T_{R}^{\alpha}f|$$

Open problem: is there any α , p such that M^{α} is bounded on L^{p} ?

Comparison of the operators

Bochner-Riesz

Homogeneous convolution kernel

Maximal Bochner-Riesz

Maximal operator for the "core" part, other techniques (square functions etc.) for the rest

Hyperbolic Bochner-Riesz

Marcinkiewicz multiplier structure

Maximal hyperbolic Bochner-Riesz

The "core" is Marcinkiewicz multiplier, no maximal estimate aviable, crucial problem

Marcinkiewicz theorem

Marcinkiewicz multiplier

$$|\partial_1 \partial_2 m(\xi_1, \xi_2)| \le A|\xi_1|^{-1}|\xi_2|^{-1}$$

Marcinkiewicz Theorem

Supose that m is a Marcinkiewicz multiplier. Then the operator

$$T^m f = \mathcal{F}^{-1}(m(\cdot)\hat{f})$$

is L^p bounded for 1 .

Maximal Marcinkiewicz theorem

Maximal Marcinkiewicz Theorem

Supose that m_1, \ldots, m_N are Marcinkiewicz multipliers with an uniform constant A. Then

$$M_N f(x) = \sup |T^{m_i} f|(x)$$

is bounded with constant $C_pA(\log N)$. The logarithmic dependence on N cannot be improved.

Also holds in dimension n with constant $C_{p,n}A(\log N)^{n/2}$.

Maximal Mikhlin-Hörmander theorem

Mikhlin-Hörmander multiplier

On \mathbb{R}^n

$$|\partial^{\beta} m(\xi)| \le A|\xi|^{-|\beta|}$$

for all $|\beta| \leq n$.

Maximal Mikhlin-Hörmander theorem

Supose that m_1, \ldots, m_N are Mikhlin-Hörmander multipliers, then

$$M_N f(x) = \sup |T^{m_i} f|(x)$$

is bounded with constant $C_p C_n A(\log N)^{1/2}$. The power of the logarithm cannot be improved. (Grafakos, Honzik, Seeger 2004)