Embeddings of Besov spaces with generalized smoothness into Lorenz spaces

Amiran Gogatishvili

Institute of Mathematics of the Academy of Sciences of the Czech Republic, Prague, CR

8th International Conference on Function Spaces, Differential Operators, Nonlinear Analysis (FSDONA-2011) September 18-24-2011 in Tabarz (Thür, (Cormanu))

September 18-24, 2011, in Tabarz/Thür. (Germany)

э

The presentation based on the work:

A. M. Caetano, A.Gogatishvili and B. Opic.

Embeddings and the growth envelope of Besov spaces involving only slowly varying smoothness.

J. Approx. Theory 163 (2011), no. 10, 1373-1399.

nac

э

ほん イヨト

Outline

Notation and basic definitions

Outline

Notation and basic definitions

< 🗆 🕨

▲□ ► ▲ Ξ ► ▲ Ξ ►

DQC

Outline

Notation and basic definitions

< 🗆 🕨

<日

Ξ.

DQC

- Ω a Borel subset of \mathbb{R}^n .
- M₀(Ω) family of all complex-valued or extended real-valued (Lebesgue-)measurable functions defined and finite a.e. on Ω.
- M⁺₀(Ω) the subset of M₀(Ω) consisting of those functions which are non-negative a.e. on Ω.
- $\mathcal{M}_0(a,b) \mathcal{M}_0((a,b))$.
- $\mathcal{M}_0^+(a, b) \mathcal{M}_0^+((a, b)).$
- $\mathcal{M}_0^+(a, b; \uparrow) f \in \mathcal{M}_0^+(a, b)$ which are non-increasing on (a, b).
- M⁺₀(a, b; ↓) f ∈ M⁺₀(a, b) which are non-decreasing on (a, b).

$$\|f\|_{r,\Omega} := \begin{cases} (\int_{\Omega} |f(t)|^r dt)^{1/r} & \text{if } 0 < r < \infty \\ \operatorname{ess sup}_{t \in \Omega} |f(t)| & \text{if } r = \infty \end{cases}$$

Slowly varying functions

Definition (slowly varying function)

Let (α, β) be one of the intervals $(0, \infty)$, (0, 1) or $(1, \infty)$. A function $b \in \mathcal{M}_0^+(\alpha, \beta)$, $0 \not\equiv b \not\equiv \infty$, is said to be slowly varying on (α, β) , $(b \in SV(\alpha, \beta))$, if, for each $\varepsilon > 0$, there are functions $g_{\varepsilon} \in \mathcal{M}_0^+(\alpha, \beta; \uparrow)$ and $g_{-\varepsilon} \in \mathcal{M}_0^+(\alpha, \beta; \downarrow)$ such that

 $t^{\varepsilon}b(t)pprox g_{arepsilon}(t) \ \ \, ext{ and } \ \ t^{-arepsilon}b(t)pprox g_{-arepsilon}(t) \ \ \, ext{ for all } \ t\in(lpha,eta).$

Slowly varying functions

Definition (slowly varying function)

Let (α, β) be one of the intervals $(0, \infty)$, (0, 1) or $(1, \infty)$. A function $b \in \mathcal{M}_0^+(\alpha, \beta)$, $0 \not\equiv b \not\equiv \infty$, is said to be slowly varying on (α, β) , $(b \in SV(\alpha, \beta))$, if, for each $\varepsilon > 0$, there are functions $g_{\varepsilon} \in \mathcal{M}_0^+(\alpha, \beta; \uparrow)$ and $g_{-\varepsilon} \in \mathcal{M}_0^+(\alpha, \beta; \downarrow)$ such that

$$t^{\varepsilon}b(t)pprox g_{arepsilon}(t)$$
 and $t^{-arepsilon}b(t)pprox g_{-arepsilon}(t)$ for all $t\in (lpha,eta).$

Examples

Let $\alpha, \beta \in \mathbb{R}$:

- $b(t) = (1 + |\log t|)^{\alpha} (1 + \log(1 + |\log t|))^{\beta};$
- $b(t) = \exp(|\log t|^{\alpha}), \ 0 < \alpha < 1.$

▲□ > < ∃ > < ∃ > = <000</p>

Lorentz space

For $f \in \mathcal{M}_0(\mathbb{R}^n)$, we define the *non-increasing rearrangement* f^* by

$$f^*(t):=\inf\{\lambda\geq 0:|\{x\in\mathbb{R}^n:|f(x)|>\lambda\}|_n\leq t\},\quad t\geq 0.$$

Definition (Lorentz space)

Given $q \in (0, \infty]$ and a non-negative measurable function ω on the interval (0, 1), the classical Lorentz space $\Lambda_q^{loc}(\omega)$ is defined to be the set of all measurable functions $f \in \mathbb{R}^n$ such that

$$\|f\|_{\Lambda^{loc}_{q}(\omega)} := \|\omega f^*\|_{q;(0,1)} < \infty.$$

In particular, putting $\omega(t) := t^{1/p-1/q} b(t)$, $t \in (0,1)$, where $b \in SV(0,1)$, we obtain the Lorentz-Karamata space $L_{p,q;b}^{loc}$.

Note that Lorentz-Karamata spaces involve as particular cases the generalized Lorentz-Zygmund spaces, the Lorentz spaces, the Zygmund classes and Lebesgue spaces

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ ・

nan

Given $f \in L_p$, $1 \le p < \infty$, the first difference operator Δ_h of step $h \in \mathbb{R}^n$ transforms f in $\Delta_h f$ defined by

$$(\Delta_h f)(x) := f(x+h) - f(x), \quad x \in \mathbb{R}^n,$$

whereas the *modulus of continuity* of f is given by

$$\omega_1(f,t)_{
ho}:=\sup_{\substack{h\in\mathbb{R}^n\|h|\leq t}}\|\Delta_h f\|_{
ho},\quad t>0.$$

э

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

DQC

Given $f \in L_p$, $1 \le p < \infty$, the first difference operator Δ_h of step $h \in \mathbb{R}^n$ transforms f in $\Delta_h f$ defined by

$$(\Delta_h f)(x) := f(x+h) - f(x), \quad x \in \mathbb{R}^n,$$

whereas the modulus of continuity of f is given by

$$\omega_1(f,t)_{
ho}:=\sup_{\substack{h\in\mathbb{R}^n\|h|\leq t}}\|\Delta_h f\|_{
ho},\quad t>0.$$

Definition (Besov spaces $\mathbf{B}_{p,r}^{0,b}$)

Let $1 \le p < \infty$, $1 \le r \le \infty$ and let $b \in SV(0,1)$ be such that

$$\|t^{-1/r}b(t)\|_{r,(0,1)} = \infty.$$
(1)

nan

The Besov space $B^{0,b}_{p,r} = B^{0,b}_{p,r}(\mathbb{R}^n)$ consists of those functions $f \in L_p$ for which the norm

$$\|f\|_{B^{0,b}_{p,r}} := \|f\|_{p} + \|t^{-1/r}b(t)\omega_{1}(f,t)_{p}\|_{r,(0,1)}$$
(2)

is finite. (with the usual modifications if $r = \infty$).

Remark

(i) When (1) does not hold $B_{p,r}^{0,b} \equiv L_p$.

(ii) An equivalent norm results on $B^{0,b}_{p,r}(\mathbb{R}^n)$ if the modulus of continuity $\omega_1(f,\cdot)_p$ in (2) is replaced by the k-th order modulus of continuity $\omega_k(f,\cdot)_p$, where $k \in \{2,3,4,\ldots\}$.

(iii) Let the function $b \in SV(0,\infty)$ satisfy

$$\|t^{-1/r}b(t)\|_{r,(1,\infty)} < \infty.$$
(3)

Then the functional

$$\|f\|_{p} + \|t^{-1/r}b(t)\omega_{1}(f,t)_{p}\|_{r,(0,\infty)}$$
(4)

is an equivalent norm on $B^{0,b}_{p,r}(\mathbb{R}^n)$.

Note also that assumption (3) is natural. Otherwise the space of all functions on \mathbb{R}^n for which norm (4) is finite is trivial (that is, it consists only of the zero element).

・吊り イラト イラト

Embeddings $B_{p,r}^{0,b} \hookrightarrow \Lambda_q^{loc}(w)$

Theorem (Reduction Theorem)

Let $1 \le p < \infty$, $1 \le r \le \infty$, $0 < q \le \infty$ and let $b \in SV(0, 1)$ satisfy (1). Assume that ω is a non-negative measurable function on (0, 1). Then

$$\|\omega(t)f^*(t)\|_{q,(0,1)} \lesssim \|f\|_{B^{0,b}_{p,r}}$$
 (5)

for all $f \in B^{0,b}_{p,r}$ if and only if

$$\|\omega(t)f^*(t)\|_{q,(0,1)}\lesssim \Big\|t^{-1/r}b(t^{1/n})\Big(\int_0^t (f^*(u))^p\,du\Big)^{1/p}\Big\|_{r,(0,1)}$$

for all $f \in \mathcal{M}_0(\mathbb{R}^n)$.

医子宫医子宫下

Given $p, r \in (0, \infty]$ and a non-negative measurable function ω on the interval (0, 1), the *local generalized gamma space* $G\Gamma_{p,r}^{loc}(\omega)$ is defined to be the set of all measurable functions $f \in \mathbb{R}^n$ such that

$$\|f\|_{G\Gamma_{p,r}^{loc}(\omega)} := \left\|\omega(t)\Big(\int_0^t (f^*(u))^p \, du\Big)^{1/p}\right\|_{r,(0,1)} < \infty$$

$${\it G}{\it \Gamma}_{1,r}^{
m loc}(\omega)={\it \Gamma}_r^{
m loc}(t\omega(t))$$

Theorem (Reduction Theorem)

Let $1 \le p < \infty$, $1 \le r \le \infty$, $0 < q \le \infty$ and let $b \in SV(0, 1)$ satisfy (1). Assume that ω is a non-negative measurable function on (0, 1). Then

$$B^{0,b}_{p,r} \hookrightarrow \Lambda^{loc}_q(\omega)$$

if and only if

$$G\Gamma_{p,r}^{loc}(t^{-1/r}b(t^{1/n})) \hookrightarrow \Lambda_q^{loc}(\omega)$$

伺い イラト イラト

Theorem $(B^{0,b}_{p,r} \hookrightarrow L^{loc}_q(w))$

Let $1 \le p < \infty$, $1 \le r \le \infty$, $0 < q \le \infty$ and let $b \in SV(0,1)$ satisfy (1). Define

$$p_r(t) := \|s^{-1/r}b(s^{1/n})\|_{r,(t,2)}, \quad t \in (0,1).$$
(6)

Put $\rho = \infty$ if $p \le q$ and define ρ by $\frac{1}{\rho} = \frac{1}{q} - \frac{1}{p}$ if q < p. Assume that ω is a non-negative measurable function on (0,1) and put

$$\Omega_q(t):=\|\omega(s)\|_{q,(0,t)},\quad t\in(0,1].$$

(i) Let $1 \leq r \leq q \leq \infty$. Then inequality (5) holds for all $f \in B^{0,b}_{\rho,r}$ if and only if $\Omega_q(1) + \|s^{-\frac{1}{\rho} - \frac{1}{\rho}} \Omega_q(s)\|_{\rho,(t,1)} \lesssim b_r(t)$ for all $t \in (0, 1)$.

(ii) Let $0 < q < r < \infty$. Then inequality (5) holds for all $f \in B^{0,b}_{\rho,r}$ if and only if $\Omega_q(1) + \int_0^1 \left(\|s^{-\frac{1}{\rho} - \frac{1}{\rho}} \Omega_q(s)\|_{\rho,(t,1)} \right)^{\frac{qr}{r-q}} b_r(t)^{\frac{r^2}{q-r}} b(t^{\frac{1}{n}})^r \frac{dt}{t} < \infty.$

(iii) Let $0 < q < r = \infty$. Put

$$b^{**}_{\infty}(t) := t^{-1} \int_0^t b_{\infty}(\tau) \, d au, \quad t \in (0,1).$$

Then inequality (5) holds for all $f \in B^{0,b}_{p,r}$ if and only if

$$\Omega_q(1) + \int_{(0,1)} \left(\|s^{-rac{1}{
ho} - rac{1}{
ho}} \Omega_q(s)\|_{
ho,(t,1)}
ight)^q d(b^{**}_\infty(t)^{-q}) < \infty.$$

nan

э

3 B

Embeddings
$$B^{0,b}_{p,r} \hookrightarrow L^{loc}_{p,q;\hat{l}}$$

Theorem ($B^{0,b}_{p,r} \hookrightarrow L^{loc}_{p,q;\tilde{b}}, r \leq q$)

Let $1 \le p < \infty$, $1 \le r \le \infty$, $0 < q \le \infty$. Let $b \in SV(0,1)$ satisfy (1) and let b_r be given by (6). Define, for all $t \in (0,1)$,

$$\tilde{b}(t) := \begin{cases} b_r(t)^{1-r/q+r/\max\{p,q\}} b(t^{1/n})^{r/q-r/\max\{p,q\}} & \text{if } r \neq \infty \\ b_{\infty}(t) & \text{if } r = \infty \end{cases} .$$
(7)

Then the inequality

$$\|t^{1/p-1/q} \tilde{b}(t) f^*(t)\|_{q,(0,1)} \lesssim \|f\|_{B^{0,b}_{p,r}}$$

holds for all $f \in B^{0,b}_{p,r}$ if and only if $q \ge r$.

Theorem ($B^{0,b}_{p,r} \hookrightarrow L^{loc}_{p,q;\tilde{b}}, r > q$)

Let $1 \le p < \infty$, $1 \le r \le q \le \infty$ and let $b \in SV(0,1)$ satisfy (1). Define b_r and \tilde{b} by (6) and (7). (i) Let $\kappa \in \mathcal{M}_0^+(0,1;\downarrow)$. Then the inequality $\|t^{1/p-1/q}\tilde{b}(t)\kappa(t)f^*(t)\|_{q,(0,1)} \lesssim \|f\|_{B^{0,b}_{p,r}}$ (8) holds for all $f \in B^{0,b}_{p,r}$ if and only if κ is bounded. (ii) Let $\kappa \in \mathcal{M}_0^+(r)$ if $\kappa \in D^{0,b}$ if $\kappa \in D^{0,b}$ if

(ii) Let $\kappa \in \mathcal{M}_0^+(0,1)$ and $q = \infty$. Then inequality (8) holds for all $f \in B^{0,b}_{p,r}$ if and only if $\|\kappa\|_{\infty,(0,1)} < \infty$.

Growth envelopes $\mathcal{E}_G(A)$

Definition (Growth envelope)

Let $(A, \|\cdot\|_A) \subset \mathcal{M}_0(\mathbb{R}^n)$ be a quasi-normed space such that $A \not\hookrightarrow L_\infty$. A positive, non-increasing, continuous function $\mathcal{E}_G(t)$ defined on some interval $(0, \varepsilon], \ \varepsilon \in (0, 1)$, is called the (local) growth envelope function of the space A provided that

$$\mathcal{E}_G(t) pprox \sup_{\|f\|_A \leq 1} f^*(t) \quad \textit{for all } t \in (0, arepsilon].$$

Given a growth envelope function $\mathcal{E}_G(t)$ of the space A (determined up to equivalence near zero) and a number $u \in (0, \infty]$, we call the pair $(\mathcal{E}_G(t), u)$ the (local) growth envelope of the space A when the inequality

$$\Big(\int_{(0,\varepsilon)} \Big(rac{f^*(t)}{\mathcal{E}_{\mathcal{G}}(t)}\Big)^q d\mu_{\mathcal{H}}(t)\Big)^{1/q} \lesssim \|f\|_{\mathcal{A}}$$

(with the usual modification when $q = \infty$) holds for all $f \in A$ if and only if the positive exponent q satisfies $q \ge u$. Here μ_H is the Borel measure associated with the non-decreasing function $H(t) := -\ln \mathcal{E}_G(t)$, $t \in (0, \varepsilon)$. The component u in the growth envelope pair is called the fine index.

3

nac

Notation and basic definitions Embeddings Growth envelopes

Growth envelopes in $B_{p,r}^{0,b}$

Theorem (Growth envelopes $\overline{\mathcal{E}_G(B_{p,r}^{0,b}))}$

Let $1 \le p < \infty$, $1 \le r \le \infty$ and let $b \in SV(0,1)$ satisfy (1). Define b_r by (6). Then

$$\mathcal{E}_G(B^{0,b}_{p,r}) = (t^{-1/p} b_r(t)^{-1}, \max\{p, r\}).$$

Remark

(i) Strictly speaking, $t^{-\frac{1}{p}}b_r(t)^{-1}$ might not have all the properties associated to a growth envelope function mentioned in Definition but, it is possible to show that there is always an equivalent function defined on (0, 1), namely,

$$h(t) := \int_t^2 s^{-1/p-1} b_r(s)^{-1} ds,$$

which does.

(ii) Since

$$\|t^{1/p-1/q}b_r(t)f^*(t)\|_{q,(0,arepsilon)} \lesssim \|f\|_{B^{0,b}_{p,r}} \quad ext{ for all } f\in B^{0,t}_{p,r}$$

if and only if

 $q \geq \max\{p, r\}.$

The embeddings of Besov spaces $B_{p,r}^{0,b}$ into $L_{p,q;\tilde{b}}^{loc}$ cannot be described in terms of growth envelopes when $1 \le r \le q .$

References

- A. M. Caetano, A. Gogatishvili and B. Opic. Sharp embeddings of Besov spaces involving only logarithmic smoothness, J. Approx. Theory , **152** (2008), 188–214.
 - M. L. Gol'dman and R. Kerman. On optimal embedding of Calderón spaces and generalized Besov spaces, Tr. Mat. Inst. Steklova **243** (2003), 161–193, (Russian) [English translation: Proc. Steklov Inst. Math. **243**(2003), 154-184].

🍉 D.D. Haroske.

Envelopes and sharp embeddings of function spaces, volume 437 of *Chapman & Hall/CRC Research Notes in Mathematics*. Chapman & Hall/CRC, Boca Raton, FL, 2007.

V. Kolyada.

Estimates of rearrangements and embedding theorems. Mat. Sb. **136** (1988), 3–23, English transl. in Math. USSR-Sb. **64** (1989), 1-21.

J. Martín.

Symmetrization inequalities in the fractional case and Besov embeddings. J. Math. Anal. Appl. **344** (2008), 99–123.

nac

References

J. Martín and M. Milman,

Symmetrization inequalities and Sobolev embeddings. Proc. Amer. Math. Soc. **134** (2006), 2335–2347.

Yu. Netrusov.

Imbedding theorems of Besov spaces into Banach lattices.

J. Soviet. Math. **47** (1989), 2871-2881. [Translated from Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) **159** (1987), 69–82].

H. Triebel.

The Structure of Functions, Monographs in Math. **97**, Birkhäuser Verlag, Basel, 2001.

H. Triebel. Theory of function spaces III.

Birkhäuser, Basel, 2006.

The end...

Thank you for attention!

・ロト ・回ト ・ヨト ・ヨト