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The presentation based on the work:

A. M. Caetano, A.Gogatishvili and B. Opic.
Embeddings and the growth envelope of Besov spaces involving only
slowly varying smoothness.
J. Approx. Theory 163 (2011), no. 10, 1373-1399.
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Ω – a Borel subset of Rn.

M0(Ω) – family of all complex-valued or extended real-valued
(Lebesgue-)measurable functions defined and finite a.e. on Ω.

M+
0 (Ω) – the subset of M0(Ω) consisting of those functions which are

non-negative a.e. on Ω.

M0(a, b) – M0((a, b)) .

M+
0 (a, b) – M+

0 ((a, b)).

M+
0 (a, b; ↑) – f ∈M+

0 (a, b) which are non-increasing on (a, b).

M+
0 (a, b; ↓) – f ∈M+

0 (a, b) which are non-decreasing on (a, b).

‖f ‖r,Ω :=

�
(
R

Ω
|f (t)|r dt)1/r if 0 < r < ∞

ess supt∈Ω|f (t)| if r = ∞
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Slowly varying functions

Definition (slowly varying function)

Let (α, β) be one of the intervals (0,∞), (0, 1) or (1,∞). A function
b ∈M+

0 (α, β), 0 6≡ b 6≡ ∞, is said to be slowly varying on (α, β),
(b ∈ SV (α, β)), if, for each ε > 0, there are functions gε ∈M+

0 (α, β; ↑) and
g−ε ∈M+

0 (α, β; ↓) such that

tεb(t) ≈ gε(t) and t−εb(t) ≈ g−ε(t) for all t ∈ (α, β).

Examples

Let α, β ∈ R:

b(t) = (1 + | log t|)α(1 + log(1 + | log t|))β ;

b(t) = exp(| log t|α), 0 < α < 1.
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Lorentz space

For f ∈M0(Rn), we define the non-increasing rearrangement f ∗ by

f ∗(t) := inf{λ ≥ 0 : |{x ∈ Rn : |f (x)| > λ}|n ≤ t}, t ≥ 0.

Definition (Lorentz space)

Given q ∈ (0,∞] and a non-negative measurable function ω on the interval
(0, 1), the classical Lorentz space Λloc

q (ω) is defined to be the set of all
measurable functions f ∈ Rn such that

‖f ‖Λloc
q (ω) := ‖ωf ∗‖q;(0,1) < ∞.

In particular, putting ω(t) := t1/p−1/q b(t), t ∈ (0, 1), where b ∈ SV (0, 1), we
obtain the Lorentz-Karamata space Lloc

p,q;b.
Note that Lorentz-Karamata spaces involve as particular cases the generalized
Lorentz-Zygmund spaces, the Lorentz spaces, the Zygmund classes and
Lebesgue spaces
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B0,b
pr

Given f ∈ Lp, 1 ≤ p < ∞, the first difference operator ∆h of step h ∈ Rn

transforms f in ∆hf defined by

(∆hf )(x) := f (x + h)− f (x), x ∈ Rn,

whereas the modulus of continuity of f is given by

ω1(f , t)p := sup
h∈Rn

|h|≤t

‖∆hf ‖p, t > 0.

Definition (Besov spaces B0,b
p,r )

Let 1 ≤ p < ∞, 1 ≤ r ≤ ∞ and let b ∈ SV (0, 1) be such that

‖t−1/rb(t)‖r,(0,1) = ∞. (1)

The Besov space B0,b
p,r = B0,b

p,r (Rn) consists of those functions f ∈ Lp for which
the norm

‖f ‖
B

0,b
p,r

:= ‖f ‖p + ‖t−1/rb(t) ω1(f , t)p‖r,(0,1) (2)

is finite. (with the usual modifications if r = ∞).
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Remark

(i) When (1) does not hold B0,b
p,r ≡ Lp.

(ii) An equivalent norm results on B0,b
p,r (Rn) if the modulus of continuity

ω1(f , ·)p in (2) is replaced by the k-th order modulus of continuity ωk(f , ·)p ,
where k ∈ {2, 3, 4, . . .}.
(iii) Let the function b ∈ SV (0,∞) satisfy

‖t−1/rb(t)‖r,(1,∞) < ∞. (3)

Then the functional

‖f ‖p + ‖t−1/rb(t) ω1(f , t)p‖r,(0,∞) (4)

is an equivalent norm on B0,b
p,r (Rn).

Note also that assumption (3) is natural. Otherwise the space of all functions
on Rn for which norm (4) is finite is trivial (that is, it consists only of the zero
element).
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Embeddings B0,b
p,r ↪→ Λloc

q (w)

Theorem (Reduction Theorem)

Let 1 ≤ p < ∞, 1 ≤ r ≤ ∞, 0 < q ≤ ∞ and let b ∈ SV (0, 1) satisfy (1).
Assume that ω is a non-negative measurable function on (0, 1). Then

‖ω(t)f ∗(t)‖q,(0,1) . ‖f ‖
B

0,b
p,r

(5)

for all f ∈ B0,b
p,r if and only if

‖ω(t)f ∗(t)‖q,(0,1) .
t−1/rb(t1/n)

�Z t

0

(f ∗(u))p du
�1/p

r,(0,1)

for all f ∈M0(Rn).
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Given p, r ∈ (0,∞] and a non-negative measurable function ω on the interval
(0, 1), the local generalized gamma space GΓloc

p,r (ω) is defined to be the set of
all measurable functions f ∈ Rn such that

‖f ‖GΓloc
p,r (ω) :=

ω(t)
�Z t

0

(f ∗(u))p du
�1/p

r,(0,1)
< ∞

GΓloc
1,r (ω) = Γloc

r (tω(t))

Theorem (Reduction Theorem)

Let 1 ≤ p < ∞, 1 ≤ r ≤ ∞, 0 < q ≤ ∞ and let b ∈ SV (0, 1) satisfy (1).
Assume that ω is a non-negative measurable function on (0, 1). Then

B0,b
p,r ↪→ Λloc

q (ω)

if and only if
GΓloc

p,r (t
−1/rb(t1/n)) ↪→ Λloc

q (ω)
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Theorem ( B0,b
p,r ↪→ Lloc

q (w))

Let 1 ≤ p < ∞, 1 ≤ r ≤ ∞, 0 < q ≤ ∞ and let b ∈ SV (0, 1) satisfy (1).
Define

br (t) := ‖s−1/rb(s1/n)‖r,(t,2), t ∈ (0, 1). (6)

Put ρ = ∞ if p ≤ q and define ρ by 1
ρ

= 1
q
− 1

p
if q < p. Assume that ω is

a non-negative measurable function on (0, 1) and put
Ωq(t) := ‖ω(s)‖q,(0,t), t ∈ (0, 1].

(i) Let 1 ≤ r ≤ q ≤ ∞. Then inequality (5) holds for all f ∈ B0,b
p,r if and only if

Ωq(1) + ‖s−
1
p
− 1

ρ Ωq(s)‖ρ,(t,1) . br (t) for all t ∈ (0, 1).

(ii) Let 0 < q < r < ∞. Then inequality (5) holds for all f ∈ B0,b
p,r if and only if

Ωq(1) +

Z 1

0

�
‖s−

1
p
− 1

ρ Ωq(s)‖ρ,(t,1)

� qr
r−q

br (t)
r2

q−r b(t
1
n )r dt

t
< ∞.

(iii) Let 0 < q < r = ∞. Put

b∗∗∞ (t) := t−1

Z t

0

b∞(τ) dτ, t ∈ (0, 1).

Then inequality (5) holds for all f ∈ B0,b
p,r if and only if

Ωq(1) +

Z
(0,1)

�
‖s−

1
p
− 1

ρ Ωq(s)‖ρ,(t,1)

�q

d(b∗∗∞ (t)−q) < ∞.
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Embeddings B0,b
p,r ↪→ Lloc

p,q;b̃

Theorem ( B0,b
p,r ↪→ Lloc

p,q;b̃
, r ≤ q)

Let 1 ≤ p < ∞, 1 ≤ r ≤ ∞, 0 < q ≤ ∞. Let b ∈ SV (0, 1) satisfy (1) and let
br be given by (6). Define, for all t ∈ (0, 1),

b̃(t) :=

�
br (t)

1−r/q+r/ max{p,q}b(t1/n)r/q−r/ max{p,q} if r 6= ∞
b∞(t) if r = ∞ . (7)

Then the inequality

‖t1/p−1/q b̃(t)f ∗(t)‖q,(0,1) . ‖f ‖
B

0,b
p,r

holds for all f ∈ B0,b
p,r if and only if q ≥ r .
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Theorem ( B0,b
p,r ↪→ Lloc

p,q;b̃
, r > q)

Let 1 ≤ p < ∞, 1 ≤ r ≤ q ≤ ∞ and let b ∈ SV (0, 1) satisfy (1). Define br

and b̃ by (6) and (7).
(i) Let κ ∈M+

0 (0, 1; ↓). Then the inequality

‖t1/p−1/q b̃(t)κ(t)f ∗(t)‖q,(0,1) . ‖f ‖
B

0,b
p,r

(8)

holds for all f ∈ B0,b
p,r if and only if κ is bounded.

(ii) Let κ ∈M+
0 (0, 1) and q = ∞. Then inequality (8) holds for all f ∈ B0,b

p,r if
and only if ‖κ‖∞,(0,1) < ∞.
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Growth envelopes EG (A)

Definition (Growth envelope)

Let (A, ‖ · ‖A) ⊂M0(Rn) be a quasi-normed space such that A 6↪→ L∞. A
positive, non-increasing, continuous function EG (t) defined on some interval
(0, ε], ε ∈ (0, 1), is called the (local) growth envelope function of the space A
provided that

EG (t) ≈ sup
‖f ‖A≤1

f ∗(t) for all t ∈ (0, ε].

Given a growth envelope function EG (t) of the space A (determined up to
equivalence near zero) and a number u ∈ (0,∞], we call the pair (EG (t), u) the
(local) growth envelope of the space A when the inequality

�Z
(0,ε)

� f ∗(t)

EG (t)

�q

dµH(t)
�1/q

. ‖f ‖A

(with the usual modification when q = ∞) holds for all f ∈ A if and only if the
positive exponent q satisfies q ≥ u. Here µH is the Borel measure associated
with the non-decreasing function H(t) := − ln EG (t), t ∈ (0, ε). The
component u in the growth envelope pair is called the fine index.
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Growth envelopes in B0,b
p,r

Theorem (Growth envelopes EG (B0,b
p,r ))

Let 1 ≤ p < ∞, 1 ≤ r ≤ ∞ and let b ∈ SV (0, 1) satisfy (1). Define br by
(6). Then

EG (B0,b
p,r ) = (t−1/p br (t)

−1, max{p, r}).
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Remark

(i) Strictly speaking, t−
1
p br (t)

−1 might not have all the properties associated
to a growth envelope function mentioned in Definition but, it is possible to
show that there is always an equivalent function defined on (0, 1), namely,

h(t) :=

Z 2

t

s−1/p−1 br (s)
−1 ds,

which does.
(ii) Since

‖t1/p−1/qbr (t)f
∗(t)‖q,(0,ε) . ‖f ‖

B
0,b
p,r

for all f ∈ B0,b
p,r

if and only if
q ≥ max{p, r}.

The embeddings of Besov spaces B0,b
p,r into Lloc

p,q;b̃
cannot be described in terms

of growth envelopes when 1 ≤ r ≤ q < p < ∞.
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The end...

Thank you for attention!
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